How to Train models on AWS SageMaker using Deep Lake datasets
How to Train an PyTorch Image Classification Model on AWS SageMaker Using Deep Lake Datasets
AWS SageMaker provides scalable infrastructure for developing, training, and deploying deep learning models. In this tutorial, we demonstrate how to run SageMaker training jobs for training a PyTorch image classification model using a Deep Lake dataset. This tutorial will focus on the SageMaker integration, and less so on the details of the training (see other training tutorials for details)
Dataset
In this tutorial we will use the Stanford Cars Dataset, which classifies the make+model+year of various vehicles. Though the dataset contains bounding boxes, we ignore those and only use the data for classification purposes.
The SageMaker job is initiated using the script below. By also running this script in a SageMaker notebook, the permissions and role access are automatically taken care of within the AWS environment.
The training script (entry_point) and the directory (source_dir) containing the training script and requirements.txt file is passed to the Estimator. The argparse parameters for the training script are passed via the hyperparameters dictinary in the Estimator. Note that we also pass the Deep Lake paths to the training and validation datasets via this input.
estimator = sagemaker.estimator.Estimator( source_dir ="./train_code", # Directory of the training script entry_point ="train_cars.py", # File for the training script image_uri = image_name, role = role, instance_count =1, instance_type = instance_type, output_path = output_path, sagemaker_session = sess, max_run =2*60*60, hyperparameters = {"train-dataset": "hub://activeloop/stanford-cars-train","val-dataset": "hub://activeloop/stanford-cars-test","batch-size": 64, "num-epochs": 40, })
The training job is triggered using the command below. Typically, the .fit() function accepts as inputs the S3 bucket containing the training data, which is then downloaded onto the local storage of the SageMaker job. Since we've passed the Deep Lake dataset paths via the hyperparameters, and since Deep Lake does not require data to be downloaded prior to training, we skip these inputs.
estimator.fit()
SageMaker offers a variety of method for advanced data logging. In this example, we can monitor the training performance in real-time in the training notebook where the jobs are triggered, or in the CloudWatch logs for each job. We observe that the validation accuracy after 40 epochs is 75%.
Training Script
The contents of the train_code folder, as well as the train_cars.py file, are shown below. The training script follow the same workflow as other PyTorch training workflows using Deep Lake. As mentioned above, the inputs to the argparse function are those from the hyperparameters inputs in the estimator.
import deeplakeimport argparseimport loggingimport osimport sysimport time import torchimport torch.nn as nnimport torch.optim as optimimport torch.utils.dataimport torch.utils.data.distributedfrom torchvision import transforms, modelslogger = logging.getLogger(__name__)logger.setLevel(logging.DEBUG)logger.addHandler(logging.StreamHandler(sys.stdout))#----------- Define transformations and their parameters -----------#WIDTH =320HEIGHT =320tform_train = transforms.Compose([# transforms.ToPILImage(), # Not needed because decode_method is set to PIL in the dataloader transforms.RandomResizedCrop((WIDTH, HEIGHT), scale=(0.75, 1.0), ratio=(0.75, 1.25)), transforms.RandomRotation(25), transforms.ColorJitter(brightness=(0.8,1.2), contrast=(0.8,1.2), saturation=(0.8,1.2), hue=(-0.1,0.1)), transforms.ToTensor(), transforms.Lambda(lambdax: x.repeat(int(3/ x.shape[0]), 1, 1)), # Adjust tensor if the image is grayscale transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),])tform_val = transforms.Compose([# transforms.ToPILImage(), # Not needed because decode_method is set to PIL in the dataloader transforms.Resize((WIDTH, HEIGHT)), transforms.ToTensor(), transforms.Lambda(lambdax: x.repeat(int(3/ x.shape[0]), 1, 1)), # Adjust tensor if the image is grayscale transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),])#----------- Define helper functions -----------## Helper function for loading the modeldefget_model_classification(num_classes):# Load a pre-trained classification model model = models.resnet34(pretrained=True)# Adjust the fully connected layer based on the number of classes in the dataset model.fc = torch.nn.Linear(model.fc.in_features, num_classes)return model# Helper function for training for 1 epochdeftrain_one_epoch(model,optimizer,criterion,data_loader,device,log_interval):# Set the model to train mode model.train()# Zero the performance stats for each epoch running_loss =0.0 start_time = time.time() total =0 correct =0for i, data inenumerate(data_loader):# Parse the inputs inputs = data['images'] labels = data['car_models'][:,0] # Get rid of the extra axis inputs = inputs.to(device) labels = labels.to(device)# Zero the parameter gradients optimizer.zero_grad()# forward + backward + optimize outputs =model(inputs.float()) loss =criterion(outputs, labels.long()) loss.backward() optimizer.step()# Update the accuracy for the epoch _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy =100* correct / total# Print statistics running_loss += loss.item() batch_time = time.time()if i % log_interval ==0:# print every 100 mini-batches speed_cumulative = (i+1)/(batch_time-start_time) logger.debug('[%5d] running loss: %.3f, epoch accuracy: %.3f, cumulative speed: %.2f '% (i, running_loss, accuracy, speed_cumulative)) running_loss =0.0# Helper function for testing the model deftest_model(model,data_loader,device):# Set the model to eval mode model.eval() total =0 correct =0with torch.no_grad():for i, data inenumerate(data_loader):# Parse the inputs inputs = data['images'] labels = data['car_models'][:,0] inputs = inputs.to(device) labels = labels.to(device) outputs =model(inputs.float()) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy =100* correct / totalreturn accuracy# Helper function for saving the model defsave_model(model,model_dir): logger.info("Saving the model") path = os.path.join(model_dir, "model.pth") torch.save(model.state_dict(), path)deftrain(args): device = torch.device("cuda")if torch.cuda.is_available()else torch.device("cpu")# Load dataset and create dataloaders. ds_train = deeplake.load(args.train_dataset, read_only =True, token = args.token, creds = args.creds) ds_val = deeplake.load(args.val_dataset, read_only =True, token = args.token, creds = args.creds) train_loader = ds_train.dataloader()\.batch(args.batch_size)\.shuffle(args.shuffle)\.transform(transform = {'images': tform_train, 'car_models': None})\.pytorch(num_workers = args.num_workers, decode_method = {'images': 'pil'}) val_loader = ds_val.dataloader()\.batch(args.batch_size)\.transform(transform = {'images': tform_val, 'car_models': None})\.pytorch(num_workers = args.num_workers, decode_method = {'images': 'pil'})# Load the model model =get_model_classification(len(ds_train.car_models.info.class_names)) model = model.to(device)# Define the optimizer, loss, and learning rate scheduler optimizer = optim.Adam(model.parameters(), lr=args.lr) criterion = nn.CrossEntropyLoss() lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.2)# Run the trainingfor epoch inrange(args.num_epochs): logger.debug("Training Epoch: {}".format(epoch))train_one_epoch(model, optimizer, criterion, train_loader, device, args.log_interval) lr_scheduler.step() accuracy =test_model(model, val_loader, device) logger.debug("Validation Accuracy: {}".format(accuracy)) logger.debug('Finished Training')save_model(model, args.model_dir)if__name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument("--train-dataset", type=str, required=True, help="path to deeplake training dataset", ) parser.add_argument("--val-dataset", type=str, required=True, help="path to deeplake validation dataset", ) parser.add_argument("--batch-size", type=int, default=64, help="input batch size for training (default: 64)", ) parser.add_argument("--num-workers", type=int, default=8, help="number of workers for the dataloaders (default: 8)", ) parser.add_argument("--shuffle", type=bool, default=True, help="shuffling for the training dataloader (default: True)", ) parser.add_argument("--num-epochs", type=int, default=10, help="number of epochs to train (default: 10)", ) parser.add_argument("--lr", type=float, default=0.001, help="learning rate (default: 0.001)" ) parser.add_argument("--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status (default: 10)", ) parser.add_argument("--token", type=str, default=None, help="token for accessing the Deep Lake dataset (default: None)" ) parser.add_argument("--creds", type=dict, default=None, help="creds dictionary for accessing the Deep Lake dataset (default: None)" ) parser.add_argument('--model_dir', type=str, default=os.environ['SM_MODEL_DIR'])train(parser.parse_args())